/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Mandatory Reflections

VeV EtaStone = Card Effects

AARHUS UNIVERSITET
« Card Effects = The fun begins

— This is the core game mechanics of HearthStone

Name Attributes | Effect

Brown Rice (1,1, 1) Deal 1 damage to opponent hero.

Tomato Salad 2,2,2) Add +1 attack to random minion.

Poke Bowl (3,2,3) Restore +2 health to hero.

Noodle Soup | (4,5, 3) Draw a card.

Spring Rolls (5,3,5) Destroy a random opponent minion.

Baked Salmon | (5,7, 6) Add +2 attack to random opponent minion.

« Whatis it?
— Given a trigger, modify the game’s state (trigger = play card)
» This resembles something we have seen before?

AU CS Henrik Baerbak Christensen 2

/v Effects

AARHUS UNIVERSITET
« Seen before, yes

The hero has a Hero Power which the player can use, but only once per turn. The
power affects the game state, usually by providing benefits for the player, or causing
harm to the opponent player. The actual effect of the hero power is determined by

— Given a trigger, modify the game’s state (trigger = use power)

A card may have an Effect which is similar to the hero’s power.

 ltis a role that a game object can play ©
— Role Interface: Effectable (‘able to trigger an effect’)

AU CS Henrik Baerbak Christensen 3

/v Effectable

AARHUS UNIVERSITET
e So

public interface hard extends Effectable, Identifiable, Categorizable

public interface Hero extends Effectable, Identifiable

« Which signals that cards and heroes have the following

responsibilities
public interface Effectable { 4 usages 18implementations A& Henrik Baerbak Christensen
EffectStrategy getEffect(); 12implementations & Henrik Baarbak Christensen
String getEffectDescription(); 14 implementations & Henrik Baerbak Christensen
}

AU CS Henrik Baerbak Christensen 4

/v Thus triggering an Card Effect

AARHUS UNIVERSITET

« As Game knowns that a card has the responsibility to
provide its effect, it can simply (during playCard()) do

— “Card, hand me your effect, and then | will execute it.”

I = , F = | F 1y BCENRE Fiold7
// Execute effect of card if any BEFORE fielding

T -~ Crmord kg ERS TTF A |
as L.E_T-l.El.. DY FRa O9F.q9.0

EffectStrategy cardEffect card.getEffect();

cardEffect.executeEffect(mutableGame: this, atIndex);

* In usePower() method, same thing goes on

/4 And exercise your power
EffectStrategy heroEffect = hero.getEffect(]);

heroEffect.executeEffect(mutableGame: this, droplndex: B);

AU CS Henrik Baerbak Christensen

eV Effects as Lambdas

AARHUS UNIVERSITET
« My EffectStrategy only has a single method...

public interface EffectStrategy { 2 Henrik Baerbak Christensen +1
void executeEffect(InternalMutableGame mutableGame, int dropIndex);

« ... Sol can code them as lambda functions

EQ mana: 1 itack: 1 health: 9

new Ca
(InternalMutableGame internalModifiableGame, int dropIndex) -> {

Player.computeOpponent(internalModifiableGame.getPlayerInTurn(]);

PlLayer opponent =
value: -1);

internalModifiableGame.deltaHeroHealth(opponent,
effectDescription: "Deal 1 damage to opponent hero.", Categorizable.ORDINARY),

F,

 From my PiStone, using WizardHub

public static CardSpec springRoll = new CardSpec(GameConstants.SPRING_ROLLS_CARD, 2 usages
mana: 4, attack: 2, health: 3,
(InternalMutableGame mutGame, int dropIndex) -> {

new Effect(mutGame).forMe().forLeftRightMinion(dropIndex).deltaAttack(+1);

new Effect(mutGame).forMe().forLeftRightMinion(dropIndex).deltaHealthOrRemove(+1);

new Effect(mutGame).forMe().forLeftRightMinion(dropIndex).setAttributesTrue(Categorizable. TAUNT);

AU CS o) . .)
}, effectDescription: "Give adjacent minions +1/+1 and taunt.", Categorizable.ORDINARY);

/v Some opt for “flatter design”

AARHUS UNIVERSITET

» The effect strategy is associated with Game, not Card

— A good design: open for extension, closed for modification
* It has the ‘card type switch’ in the strategy, not in game

public class CardPowerStrategyEta implements CardPowerStrategy {

@override
public woid useCardPower(Card c) {
var playerInTurn = game.getPlayerInTurn();

var opposingPlayer = Player.computeOpponent(playerInTurn);

° Llablllt if(c.getName().equals(GameConstants.BROWN_RICE CARD)}{
y game.changeHercHealthBy (opposingPlayer, -1);

— The switch can :
become pretty Iong if{c.getlame().equals(GameConstants. TOMATO SALAD CARD)){

game . changeCardDamageBy (calculateOwnRandomTargetCard(), +1);
— (HearthStone = !
> 1000 cards)

AU CS Henrik Baerbak Christensen 7

/v

AARHUS UNIVERSITET

From last week’s cancelled
lecture...

One major issue that needs to be
stated...

AU CS Henrik Baerbak Christensen

eV No Doubles in Production

AARHUS UNIVERSITET

« What is the issue with thls
“test stub”? fini el . Bl

lvate

index) this.index = index;

(WhiCh per definition V .;S;atus jsePowerChef (Game game, Player player) {

Player opponent = Player.computeOpponent(player);

is not a test stub...)

targetIndex = (int) (Math.random() * game.getFieldSize(opponent));
e {

targetIndex = index;

((Cards) game.getCardInField(opponent, targetIndex)).changeHealth(
return Status.O0K;

CS@AU Henrik Baerbak Christensen 9

b Test Code in Production

AARHUS UNIVERSITET
® O ne Su Ch exa m ple # 1. Knight Capital’s $440 Million “Test Code” Disaster (2012)

Perhaps the most infamous case.

— Thanks to ChatGPT - whathappenea:

Knight Capital Group deployed a new version of their trading software to production, but one of the
eight servers still had old test code that was supposed to be removed. That old code (nicknamed "Power
Peg"”) was meant only for internal testing — it automatically placed massive buy/sell orders at high
speed to "test” trading behavior.

» Consequence:
Once deployed, the system started making huge, uncontrolled trades in real markets. Within 45 minutes,

Knight lost $440 million, effectively bankrupting the firm.

+ Takeaway:

e Test flags and dead code can be catastrophic if not removed before deployment.

Journal of Financial Economics
Volume 139, Issue 3, March 2021, Pages 922-949

= Having uniform deployment and feature-flag controls across all production nodes is critical.

Slow-moving capital and execution costs:

Evidence from a major trading glitch

incent Bogousslaveky * 5, Piarre Colin-Dufreme’® & 5 Mahmat Seglam 53 In this paper, we shed light on the importance of inventory and capital shocks by
examining the impact of a major trading glitch at a large high-frequency market-
making firm (Knight Capital, henceforth KC) on different measures of liquidity. The
glitch—originating from the erroneous implementation of a trading software—
occurred on August 1, 2012 during the first 30 minutes of trading and resulted in
numerous erroneous trades on a set of NYSE-listed stocks.

CS@AU Henrik Baerbak Christensen 10

/v

AARHUS UNIVERSITET

AU CS

From Earlier Years

Henrik Baerbak Christensen

11

/v

AARHUS UNIVERSITET

From the Trenches

 What is problematic here?
— Assuming this method is in Game?

public Player getWinner() {

AU CS

WinnerStrategy strategy = null;
if (stone == Stone.AlphaStone) {

strategy = new FindusWinsAfterFourTurnsStrategy();

} else if (stone == Stone.BetaStone) {
strategy = new WinnerByDeathStrategy();
} else if (stone == Stone.EpsilonStone) {
strategy = new WinnerByAttackOutputStategy();
}
assert strategqy != null;
return strategy.computeWinner(game: this);

Henrik Baerbak Christensen

12

\ 4
AARHUS UNIVERSITET

« What is happening?
— SemiStone’s
“pick random hero”

o 777

AU CS

Overengineering

frenchItalianStrate

o)

String

Number . get (playe

thaiDanis determineHero(Player.FINDUS);

thaiDanishStrategy.determineHero(Player.PEDDERSE

frenchItalianStrategy.determineHero(Play

frenchItalianStrategy.determineHero(Play

lic EffectStrategy 1
int
turn thaiDanishStra

I
L

.getEffectStrategy(hero);

/v Overengineering

AARHUS UNIVERSITET
« What is happening?

— SemiStone’s
“pick random hero”

rivate Map<Player, Integer> h

« Qverengineer

— Overly complex
solution to simple
problem

e Storm P

— Avoid his creations

AU CS

/v Factory (?)

AARHUS UNIVERSITET

« Afactory for SemiStone
— Or—isit???

SemiStoneFactory(DecidePositionStrategy positionStrateaqy

= positionStrategy

decideHeroStrateqgy

* Find two aspects that are problematic here

AU CS Henrik Baerbak Christensen 15

/v Cast to Interface

AARHUS UNIVERSITET

« (Cast to an interface is not problematic; cast to class is.
— MutableHero h = (MutableHero) getHero(who);

p0verride

ublic Hero getHero(Player who) {

return hero.get(who);

« One example of avoiding it
— Benefits? goverr ide

ublic MutableHero getMutableHero(Player who) {

— Liabilities? return hero. get(who);

0 erride
ublic ArrayList<MutableCard> getMutableDeck({Player who)} {
return deck.get(who);

prhverride
ublic ArraylList<MutableCard> getMutableHand(Player who)} {
return hand.get(who);

AU CS Henrik Baerbak Christensen 16

/v Simple, but too Simple

AARHUS UNIVERSITET

« A UML with 1000 lines is worthless, but do not fall in the

other pitfall ©

ZetaStoneFactory

‘ AlternatingWinnerStrategy

RandomMinionStrategy

{ CincoDeckStrategy]

Intitial ThreeManaStrategy

NoMNewManaProduction

BabyHeroStrategy

AU CS Henrik Baerbak Christensen

17

