
Software Engineering

and Architecture

Mandatory Reflections



EtaStone = Card Effects

• Card Effects = The fun begins

– This is the core game mechanics of HearthStone

• What is it?

– Given a trigger, modify the game’s state (trigger = play card)

• This resembles something we have seen before?

AU CS Henrik Bærbak Christensen 2



Effects

• Seen before, yes

– Given a trigger, modify the game’s state (trigger = use power)

• It is a role that a game object can play ☺

– Role Interface: Effectable (‘able to trigger an effect’)

AU CS Henrik Bærbak Christensen 3



Effectable

• So

• Which signals that cards and heroes have the following 

responsibilities

AU CS Henrik Bærbak Christensen 4



Thus triggering an Card Effect

• As Game knowns that a card has the responsibility to 

provide its effect, it can simply (during playCard()) do

– “Card, hand me your effect, and then I will execute it.”

• In usePower() method, same thing goes on

AU CS Henrik Bærbak Christensen 5



Effects as Lambdas

• My EffectStrategy only has a single method...

• ... So I can code them as lambda functions

• From my PiStone, using WizardHub

AU CS Henrik Bærbak Christensen 6



Some opt for “flatter design”

• The effect strategy is associated with Game, not Card

– A good design: open for extension, closed for modification

• It has the ‘card type switch’ in the strategy, not in game

• Liability

– The switch can

become pretty long

– (HearthStone =

> 1000 cards)

AU CS Henrik Bærbak Christensen 7



From last week’s cancelled 

lecture...

One major issue that needs to be 

stated...

AU CS Henrik Bærbak Christensen 8



No Doubles in Production

• What is the issue with this

“test stub”?

• (Which per definition

is not a test stub…)

CS@AU Henrik Bærbak Christensen 9



Test Code in Production

• One such example 

– Thanks to ChatGPT

CS@AU Henrik Bærbak Christensen 10



From Earlier Years

AU CS Henrik Bærbak Christensen 11



From the Trenches

• What is problematic here? 

– Assuming this method is in Game?

AU CS Henrik Bærbak Christensen 12



Overengineering

• What is happening?

– SemiStone’s

“pick random hero”

• ???

AU CS Henrik Bærbak Christensen 13



Overengineering

• What is happening?

– SemiStone’s

“pick random hero”

• Overengineer

– Overly complex

solution to simple

problem

• Storm P 

– Avoid his creations

AU CS Henrik Bærbak Christensen 14



Factory (?)

• A factory for SemiStone

– Or – is it???

• Find two aspects that are problematic here

AU CS Henrik Bærbak Christensen 15



Cast to Interface

• Cast to an interface is not problematic; cast to class is.

– MutableHero h = (MutableHero) getHero(who);

• One example of avoiding it

– Benefits?

– Liabilities?

AU CS Henrik Bærbak Christensen 16



Simple, but too Simple

• A UML with 1000 lines is worthless, but do not fall in the 

other pitfall ☺

AU CS Henrik Bærbak Christensen 17


